
ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-1 SWEG Version 6.5

2.2 MOVEMENT

Movement is a combination of change in location and change in orientation. SWEG allows
a user to cause simulated movement of a platform by assigning a sequence of positions to
it. From a modeling perspective, there are two major aspects of movement: creation of a
movement path subject to movement constraints, and the timing of the actual physical
changes in location and/or orientation due to movement. Movement may also cause
changes in the electromagnetic and acoustic signature of the mover. These effects are
discussed in Section 2.3.

Movement Constraints

In the real world, movement is subject to laws of physics that define relationships between
mass and motion; e.g., momentum, inertia, gravity, friction, etc. In addition to these
dynamic limitations, real-world movement may be limited by propulsion capabilities,
environmental conditions, operational rules, and component damage or failure.

Almost all limitations on movement in SWEG are defined by the user. Platforms in SWEG
do not have mass, thus no dynamic limitations are imposed by the model. For example, the
user can define the speed of a platform arbitrarily; SWEG does not check to see if it makes
physical sense. Platforms stop instantaneously whenever the user instructions cause
movement to stop; SWEG does not require coasting to the stop. After stopping, platforms
may be removed or remain in the scenario. Even if a platform is airborne, it may stop in
place and remain in the scenario for later actions, if the user so chooses. Fuel is considered
only if the user chooses to do so and specifies the original amount of fuel and the rate of
fuel usage.

SWEG has no internal assumptions about fuel usage or maximum speed, altitude,
climb/dive rates, etc. It is the prerogative and the responsibility of the user to set the
following limits as desired for each type of moving platform: fuel-usage, maximum
acceleration, maximum deceleration, minimum turn radius, and climb/dive limits; the user
may also override some of these limits in specific movement paths. Operational constraints
may include terrain following, terrain avoidance, or threat avoidance; SWEG allows the
user to select combinations of these options for each individual mover. The user may also
define additional vertical boundary limits on the specific path, changes in orientation along
the path, climb/dive rate and angle, and several other conditions. See the design
requirements for a complete list of user options.

The basic movement path is defined by a start time and a list of successive positions and
velocities for the mover. SWEG will create paths consisting of a sequence of straight line
segments and arcs of circles that pass through the given path points, if possible given other
user constraints. The path altitudes may be defined as above-ground-level (AGL) or mean-
sea-level (MSL), the path mode as surface or 3D, and the path may be defined as a sequence
of straight line segments with instantaneous turns or with turns defined by arcs of a
specified minimum radius.

Movement may be either planned or reactive. SWEG allows the user to define preplanned
movement path for platforms (except disaggregated platforms) and to define reactive
deviations from that plan. The user may define reactive maneuvers for a disaggregated
platform. The decisions used to cause reactive movement are discussed in Sections 2.9

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-2 Update: 02/17/98

through 2.11, the timing of position updates is the same in both modes, and limits on
movement are nearly the same. See design requirement c for a complete list of options.

Real world platforms can start and stop and restart movement. This is also possible in
SWEG. Platforms can start movement at any time after the start of the scenario simulation;
however, they must exist (and thus be susceptible to detection and attack) from the start of
the simulation unless they are disaggregated from another player at some time in the
simulation. Platform paths can include preplanned stops and restarts, as well as reactive
stops and starts. The user can choose to have platforms disappear after stopping or to
remain in the scenario at the last point of their movement paths. Only if they remain after
stopping can they restart movement.

Movement of one platform may be coordinated with movement of other platforms.
Platforms such as aircraft, tanks, and ships may be moving in formation. SWEG allows the
user to define formation movement of platforms if the platforms have implicit
instantaneous communication with each other.

Timing of Movement

Movement may be continuous in the real world, but it must occur in discrete steps in a
digital simulation model. A user defines a movement path by providing a list of successive
positions and the speeds to be used in moving from one position to the next. The model
must use this information to calculate the position of the platform at any specific point in
time. Some models are time-stepped; i.e., new platform positions (and other changes in the
scenario) are calculated at predetermined time intervals. Other models are event-stepped;
i.e., positions (and other conditions) are calculated only at times they are needed for some
internal or external purpose. SWEG is more like an event-stepped model, although the user
must define a (global) minimum time interval between position updates.

SWEG does calculate position only when it is needed for some internal or external purpose,
but the position calculated need not be the position at the current game time, it could be a
position for some time in the future (positions at past times are calculated only for output).
Internally, SWEG needs platform position to test for a possible interaction with another
platform; preliminary tests are based on path and scenario geometry, additional tests are
based on capabilities and decision-making rules. External requests for position can be
generated by user instructions to provide this information for graphics or listing purposes.
They can also be generated by other assets (simulators connected to SWEG) when SWEG
is run in virtual mode.

Because of the way position updates are calculated and used within SWEG, the timing of
movement is not applicable for this FE; only the creation of the movement path will be
included as part of this section.

2.2.1 Functional Element Design Requirements

The design requirements necessary to implement the movement functional element in
SWEG are listed below.

a. SWEG will provide a capability for a user to define movement constraints and
characteristics for each type of platform in the TDB. The user options will
include the following input data items.

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-3 SWEG Version 6.5

1. Fuel usage defined as a burn rate dependent on altitude and speed.

2. Maximum acceleration.

3. Maximum deceleration.

4. Maximum traversable slope for a surface mover. (Not currently
implemented)

5. Minimum turn radius defined as a 3-dimensional distance.

6. Maximum and minimum altitudes (MSL). (Not currently used)

7. Climb/dive limits defined as maximum and minimum vertical rates.

8. Orientation limits defined as the maximum roll, pitch, and yaw angles
relative to the velocity vector. (Not currently used)

9. Orientation rates defined as maximum angular rates of change in each of
roll, pitch, and yaw. (Not currently used)

10. Maximum and minimum speed limits (Not currently used)

11. Delay time between the decision to start moving and the actual start of
physical movement

SWEG will impose these limits when creating a movement path for platforms
of the given type in the SDB. SWEG will allow the user to override the
acceleration and turn radius limits by specific SDB instructions, but will change
the SDB positions if they violate the defined climb/dive limits for that type.

b. SWEG will provide a capability for a user to define a planned movement path
for each non-disaggregated platform in the SDB. The path will include a time
to start movement and sequence of locations. The locations may be defined in
terms of Cartesian coordinates or latitude, longitude, and altitude. Path altitudes
(or z-coordinates) must be defined as AGL or MSL. The path must be defined
as surface or three-dimensional movement, and the turns must be specified as
instantaneous with sharp corners or as requiring a minimum turn radius. The
following additional options will be available; all except the first may be
specified for each path point.

1. Minimum altitude AGL or maximum altitude MSL within a (2-
dimensional) polygonal area

2. Orientation and rate of change of orientation in terms of roll, pitch, and
yaw (if orientation is not specified, the platform orientation is defined
according to the velocity vector)

3. Climb/dive rate or climb/dive angle

4. Terrain-following, terrain-avoidance, or threat-avoidance

5. Turn mode as an instantaneous turn (sharp corner) or as a turn in an arc
that starts at the given path point

6. Speed and speed changes

7. Stop at this point for a specified time interval

8. Turn direction as right or left or the shorter of the two directions.

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-4 Update: 02/17/98

9. Turn radius in terms of distance or force (g’s) or roll, pitch, and yaw (Only
the distance option is currently used)

10. Turn type as banked or skid (Only the banked option is currently used)

SWEG will use these definitions to create a movement path consisting of
straight line segments and arcs of circles, subject to constraints in the other
design requirements.

c. SWEG will provide a capability for a user to define reactive movement paths
for each type of platform in the TDB. The path will include a sequence of
locations defined as relative Cartesian coordinates. The x and y coordinates may
be relative to the mover or relative to the target; the z-coordinate may be defined
as AGL, MSL, relative to the mover, or relative to the target. The following
additional options for each path point will be available.

1. Orientation and rate of change of orientation in terms of roll, pitch, and
yaw (if orientation is not specified, the platform orientation is defined
according to the velocity vector)

2. Climb/dive rate or climb/dive angle

3. Terrain-following or terrain-avoidance or threat-avoidance

4. Turn mode as an instantaneous turn (sharp corner) or as a turn in an arc
that starts at the given path point

5. Speed and speed changes.

6. Stop at this point for a specified time interval

7. Turn direction as right or left or the shorter of the two directions.

8. Turn radius in terms of distance or force (g’s) or roll, pitch, and yaw (Only
the distance option is currently used)

9. Turn type as banked or skid (Only the banked option is currently used)

SWEG will use these definitions to create a reactive movement path consisting
of straight line segments and arcs of circles, subject to constraints in the other
design requirements.

d. SWEG will provide a capability for a user to define formation movement for
platforms that have implicit instantaneous communication with each other; i.e.,
for multiple platforms of a single player. The user will be able to define a
formation template containing the following information for each echelon for
each type of formation for each type of player.

1. Relative position in terms of Cartesian coordinates relative to the
formation positions to be defined in the SDB.

2. Identification of the leader for this echelon; this may be another echelon
or it may be the local origin of the formation.

3. Relative time to start a turn as either the same time as the leader starts the
turn or no sooner than this echelon comes abreast of the leader’s turn
point, or the turn time specified for the formation in the SDB.

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-5 SWEG Version 6.5

4. Echelon identification to assume after a turn; this can be the same echelon
identification it had before the turn, or it can change its relative position
within the formation and assume a different echelon identification.

5. Distance allowed after a turn to get back into its formation position.

For each instance of a formation defined in the SDB, a user will be able to define
a planned movement path. The path will include a time to start movement and
sequence of locations. The locations may be defined in terms of Cartesian
coordinates or latitude, longitude, and altitude. Path altitudes (or z-coordinates)
must be defined as AGL or MSL. The path must be defined as surface or three-
dimensional movement, and the turns must be specified as instantaneous with
sharp corners or as requiring a minimum turn radius. The following additional
options will be available for each path point.

1. Speed and speed changes.

2. Turn radius in terms of distance or force (g’s) or roll, pitch, and yaw (Only
the distance option is currently used).

SWEG will use these definitions to create movement paths consisting of straight
line segments and arcs of circles, subject to constraints in the other design
requirements.

e. SWEG will use the path created to determine the position of a platform
whenever the position is needed for some internal or external purpose or to
fulfill user instructions for the maximum time between position updates. SWEG
will calculate platform position no more frequently than is necessary to satisfy
the preceding requirements.

2.2.2 Functional Element Design Approach

This section is not currently available.

2.2.3 Functional Element Software Design

This section contains a table and two software code trees which describe the software
design necessary to implement the requirements and design approach outlined above.
Table 2.2-1 lists most of the functions found in the code trees, and a description of each
function is provided. Figure 2.2-1 describes the path to ORNJcontrol, the top-level C++
function in the code for movement. (The call to ORNJcontrol that creates the planned
movement paths is not shown. That call occurs during the SDB step as part of parsing the
user instructions, and only runtime functions are included here.) Figure 2.2-2 is the code
tree for ORNJcontrol and its subordinate functions.

A function’s subtree is provided within the figure only the first time that the function is
called. The tree for DLG8control is completely expanded in Section 2.11 Logic Processes.
Not all functions shown in the figures are included in the table. The omitted entries are

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-6 Update: 02/17/98

trivial lookup functions (single assignment statements), list-processing or memory
allocation functions, or C++ class functions for construction, etc.

TABLE 2.2-1. Movement Functions Table.

Function Description

AKSNcontrol controls resource allocation decisions

AKSNexecute performs actions to carry out decisions

AKSNmaneuver performs actions for reactive maneuvers

AKSNmnvrpfrm reactively causes one of a player’s own platforms to move

AKSNrequests performs actions for filling requests from other players

BaseHost::Run runs all steps

conlink connects contour line endpoints

conpoly construct polygons for terrain/threat avoidance

crslwc determines line/circle crossing

crslwl determines line/line crossing

DLG8control controls resource evaluation and selection decisions

geocrs checks for line crossing with a set of lines

geoctr determines 2-D center of gravity for a set of points

geodst determine closest or farthest point to a given point

KNMXcontrol adds new point to movement path

KNMXmaneuver calculates distances to level off and start/stop acceleration

KNMXpoints determines start/stop acceleration and level off points

KNMXturnarc constructs an arc for a turn

lifbeg begins a new player’s life

lifdna creates a new player using a dummy player as a template

lifnew creates a new life during model execution

main controls overall execution

MainInit initiates processing and runs either the boot step or normal execution

MainParse controls parsing of user instructions

MovePlane::CalcRate gets rate of turn

MovePlane::CalcValue calculates a given value for orientation

MovePlane::GetDuration gets duration time for a turn

MovePlane::GetValue looks up a value for orientation

MovePlane::SetRate sets the rate for changes in orientation

MovePlane::SetValue sets the yaw, pitch, or roll value for orientation

movset controls specific actions for reactive maneuvers

movstop performs stop movement action

ORNJbestpath finds best path using shortest distance as criterion

ORNJckpoints processes path checkpoints for terrain following

ORNJcombpoly combines two polygons including any internal holes

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-7 SWEG Version 6.5

ORNJcontrol controls construction of the checkpoints of a movement path

ORNJcopypoly makes a duplicate copy of an input polygon

ORNJeveryleg sets up movement path for all legs defined by checkpoints

ORNJfollowpath generates path, possibly using terrain following

ORNJgoaround finds any paths around polygon obstruction

ORNJlinepoly determines if a line segment intersects one polygon

ORNJmasking generates masking pattern for use in threat avoidance

ORNJmazepath finds shortest distance path through restricted areas

ORNJmergesmooth merges path segments and smooths out unnecessary points

ORNJpolygons combines any polygons that intersect

ORNJsmoothpath smoothes path possibly creating new options

ORNJsubsets determines if input polygons are a subset of each other

ORNJvertical generates vertical portion of terrain following path

program controls execution of all steps except bootstrap

region determines if a point is within a two dimensional region

semant controls semantic processing of instructions

simnxt controls event sequencing and runtime execution

simphy controls processing of physical events

simthk controls processing of mental events

simul8 controls semantic processing of runtime instructions

srhpro searches table for interval containing a specific value

TMaster::GetUanVocab retrieves a user application name counter

TMBRmutigon recycles multiple polygon tree structures

TMBRscratchpad recycles scratch pad tree structures

TMemory::Allocate allocates permanent storage

TMemory::AllocTemp allocates temporary storage

TMemory::Deallocate deallocates a list of blocks by using the address within the provided
pointer

TMemory::LLSTremove returns a pointer to the block on the traversed list which matches the
provided key

TMemory::LLSTsearch searches a list

TOrientation::AddManeuver adds an orientation maneuver

TOrientation::AddPoint adds a point to the orientation change list

TOrientation::CalcRollRate calculates the roll rate

TOrientation::CalcYaw calculates the yaw

TOrientation::FindElement searches for an entry in the orientation list

TOrientation::FindOrCreate adds or finds an entry on orientation list

TOrientation::GetLeftVector returns the left facing vector

TABLE 2.2-1. Movement Functions Table. (Contd.)

Function Description

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-8 Update: 02/17/98

TOrientation::NeedInitialFacing determines if initial facing calculations are needed

TOrientation::RateChange sets the orientation rate change

TOrientation::SetFacing sets the facing for orientation

TOrientElement::DeleteAllAfter deletes all orientation points after a time

TPathEntry::CheckOBOrient checks orientation in the path under construction

TPathEntry::CreateOrientation creates orientation points

TPathEntry::ManeuverData looks up data associated with maneuver

TPlayer::Transform transforms this player for model execution

TPlayer::Translate translates data to set up this player

TTable::SearchInt searches a table for a specific integer

TTerrain::AdjustBounds adjusts the terrain bounds

TTerrain::BeenVisited returns a flag if terrain vertex has been visited

TTerrain::EdgeMasklos determines the masking of terrain edges

TTerrain::Elevation determines the z-coordinate on a surface given an x, y coordinate pair

TTerrain::FindTriangle determine the terrain triangle for a point given and x,y coordinate pair

TTerrain::FollowContour follows a contour through the terrain

TTerrain::InBounds checks for point within terrain bounds

TTerrain::IntermediatePoints determines intermediate points for triangles

TTerrain::LineOfSight determine if there is a line of sight between two objects

TTerrain::MarkAsVisited marks the vertex as having been visited

TTerrain::Obstacles determines obstacles for movement

TTerrain::RemoveMark removes the visited mark for a terrain vertex

vecarc calculates subtended angle for an arc defined by several vectors

wpnfyr processes weapon intercept events

xl8fpl generates RDB future path list block

TABLE 2.2-1. Movement Functions Table. (Contd.)

Function Description

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-9 SWEG Version 6.5

main
|-BaseHost::Run

|-MainInit
|-program

|-MainParse
|-semant

|-simul8
|-simnxt

|-simthk
| |-DLG8control
| |-AKSNcontrol
| |-AKSNexecute
| |-AKSNmaneuver
| | |-AKSNmnvrpfrm
| | |-ORNJcontrol
| | |-movset
| | |-movstop
| | |-ORNJcontrol
| |-AKSNrequests
| |-ORNJcontrol
| |-lifbeg
| |-lifnew
| |-lifdna
| |-TPlayer::Transform
| |-TPlayer::Translate
| |-xl8fpl
| |-ORNJcontrol
|-simphy

|-wpnfyr
|-lifbeg

|-lifnew
|-lifdna

|-TPlayer::Transform
|-TPlayer::Translate

|-xl8fpl
|-ORNJcontrol

FIGURE 2.2-1. Movement Top-Level Code Tree.

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-10 Update: 02/17/98

ORNJcontrol
|-TMemory::Index2Ptr
|-TTable::SearchInt
|-TMemory::Allocate
|-srhpro
|-TMaster::TerrainOn
|-TMaster::GetTerrain
|-TTerrain::Obstacles
| |-TTerrain::FindTriangle
| |-TTerrain::InBounds
| |-VertexIndex::VertexIndex
| |-VertexIndex::Value
| |-VertexIndex::operator++
| |-VerticeArray::operator[]
| |-TTerrain::BeenVisited
| | |-SwegExcpt::SwegExcpt
| | |-TTerrain::toIndex
| | | \-SwegExcpt::SwegExcpt
| | \-VertexIndex::Value
| |-operator+
| |-TTerrain::FollowContour
| | |-SwegExcpt::SwegExcpt
| | |-TTerrain::BeenVisited
| | |-VertexIndex::operator==
| | |-isZeroEquiv
| | |-TMemory::Index2Ptr
| | |-TMemory::AllocTemp
| | |-TMemory::Ptr2Index
| | |-TTerrain::MarkAsVisited
| | | |-SwegExcpt::SwegExcpt
| | | |-TTerrain::toIndex
| | | |-VertexIndex::Value
| | | \-operator+
| | |-VerticeArray::operator[]
| | |-operator+
| | |-TTerrain::InBounds
| | |-TTerrain::AdjustBounds
| | | \-SwegExcpt::SwegExcpt
| | |-VertexIndex::operator++
| | \-VertexIndex::operator+=
| |-conpoly
| | |-TMemory::Index2Ptr
| | |-TMemory::Allocate
| | |-TMemory::Ptr2Index
| | \-TMemory::Deallocate
| |-TMemory::Index2Ptr
| |-TMemory::Deallocate

FIGURE 2.2-2. Movement Code Tree.

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-11 SWEG Version 6.5

| | |-TMemory::Deallocate
| | \-TMemory::Ptr2Index
| |-TTerrain::RemoveMark
| | |-SwegExcpt::SwegExcpt
| | |-TTerrain::toIndex
| | |-VertexIndex::Value
| | \-operator+
| |-conlink
| | |-TMemory::Index2Ptr
| | |-TMemory::AllocTemp
| | |-TMemory::Ptr2Index
| | \-conpoly
| \-TMemory::Ptr2Index
|-ORNJeveryleg
| |-TMemory::Index2Ptr
| |-DVector::DVector
| |-operator-
| |-DVector::GetHorizLength
| |-TMemory::Ptr2Index
| |-region
| | |-DVector::Getx
| | |-DVector::Gety
| | |-dbg_atan2
| | \-dist
| |-TMemory::LLSTremove
| |-TMemory::Deallocate
| |-DVector::DVector
| |-ORNJmasking
| | |-TMaster::GetTerrain
| | |-TMemory::Allocate
| | |-DVector::DVector
| | |-operator+
| | |-operator*
| | |-TMaster::TerrainOn
| | |-DVector::Putz
| | |-TTerrain::Elevation
| | |-TTerrain::LineOfSight
| | | |-DVector::Getz
| | | |-DVector::Getx
| | | |-DVector::Gety
| | | |-dist
| | | |-dbg_acos
| | | |-VertexIndex::VertexIndex
| | | |-TTerrain::FindTriangle
| | | \-TTerrain::EdgeMasklos
| | | |-dist
| | | |-VerticeArray::operator[]
| | | |-operator+

FIGURE 2.2-2. Movement Code Tree. (Contd.)

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-12 Update: 02/17/98

| | | |-VertexIndex::operator+=
| | | |-isZeroEquiv
| | | \-TTerrain::toIndex
| | |-DVector::operator-=
| | |-TMemory::Index2Ptr
| | |-TMemory::Ptr2Index
| | |-DVector::Getx
| | |-DVector::Gety
| | \-geoctr
| |-ORNJpolygons
| | |-ORNJcopypoly
| | | |-TMemory::Allocate
| | | |-TMemory::Index2Ptr
| | | \-TMemory::Ptr2Index
| | |-ORNJsubsets
| | | |-TMemory::Index2Ptr
| | | |-dbg_sqrt
| | | |-dist
| | | |-DVector::DVector
| | | |-region
| | | |-TMemory::Ptr2Index
| | | |-ORNJlinepoly
| | | | |-DVector::DVector
| | | | |-DVector::DVector
| | | | |-dbg_sqrt
| | | | |-crslwc
| | | | | |-operator-
| | | | | |-DVector::Putz
| | | | | |-operator^
| | | | | |-dbg_sqrt
| | | | | |-operator+
| | | | | \-operator*
| | | | |-operator-
| | | | |-DVector::GetHorizLength
| | | | |-TMemory::Index2Ptr
| | | | |-crslwl
| | | | | |-operator-
| | | | | |-operator*
| | | | | |-DVector::Getz
| | | | | |-operator+
| | | | | \-operator*
| | | | |-TMemory::Allocate
| | | | |-DVector::Getx
| | | | |-DVector::Gety
| | | | \-TMemory::Ptr2Index
| | | |-DVector::Getx
| | | |-DVector::Gety
| | | \-DVector::operator=

FIGURE 2.2-2. Movement Code Tree. (Contd.)

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-13 SWEG Version 6.5

| | |-ORNJcombpoly
| | | |-TMemory::Allocate
| | | |-TMemory::Index2Ptr
| | | |-TMaster::DebugOn
| | | |-TMemory::Ptr2Index
| | | |-geoctr
| | | |-geodst
| | | |-TMemory::LLSTsearch
| | | |-DVector::DVector
| | | |-region
| | | |-dist
| | | |-ORNJlinepoly
| | | |-DVector::operator
| | | \-TMemory::Deallocate
| | |-TMemory::Ptr2Index
| | |-TMemory::LLSTsearch
| | |-TMemory::Index2Ptr
| | |-TMemory::Deallocate
| | \-TMemory::Deallocate
| |-TMBRmutigon
| | \-TMemory::Deallocate
| |-TMemory::LLSTsearch
| |-ORNJmazepath
| | |-DVector::DVector
| | |-region
| | |-TMemory::Allocate
| | |-TMemory::Index2Ptr
| | |-TMemory::Ptr2Index
| | |-TMemory::LLSTsearch
| | |-ORNJlinepoly
| | |-TMemory::Deallocate
| | |-ORNJgoaround
| | | |-TMemory::Ptr2Index
| | | |-TMemory::LLSTsearch
| | | |-TMemory::Index2Ptr
| | | |-dist
| | | |-DVector::DVector
| | | |-region
| | | |-TMemory::Allocate
| | | |-TMemory::Deallocate
| | | \-ORNJsmoothpath
| | | |-DVector::DVector
| | | |-DVector::DVector
| | | |-ORNJmergesmooth
| | | | |-DVector::DVector
| | | | |-dist
| | | | |-TMemory::Index2Ptr
| | | | |-ORNJlinepoly

FIGURE 2.2-2. Movement Code Tree. (Contd.)

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-14 Update: 02/17/98

| | | | |-TMemory::Ptr2Index
| | | | |-DVector::DVector
| | | | |-region
| | | | |-operator+
| | | | \-operator-
| | | |-crslwl
| | | |-DVector::operator=
| | | |-geocrs
| | | | |-DVector::DVector
| | | | |-DVector::DVector
| | | | |-DVector::operator
| | | | \-crslwl
| | | |-TMemory::Deallocate
| | | |-TMemory::Ptr2Index
| | | |-TMemory::LLSTsearch
| | | \-ORNJlinepoly
| | |-TMemory::Deallocate
| | \-ORNJbestpath
| | |-TMemory::Index2Ptr
| | |-dist
| | |-TMemory::Allocate
| | |-TMemory::Ptr2Index
| | |-DVector::DVector
| | |-DVector::Getz
| | |-FloatVector::operator=
| | |-DVector::DVector
| | \-TMBRscratchpad
| | \-TMemory::Deallocate
| |-ORNJfollowpath
| | |-TMaster::GetTerrain
| | |-TMemory::Index2Ptr
| | |-isZeroEquiv
| | |-TPathEntry::TPathEntry
| | |-TPathEntry::SetTDepart
| | |-TPathEntry::SetTArrive
| | |-TPathEntry::SetPos
| | |-DVector::DVector
| | |-TPathEntry::PutUnitVel
| | |-operator-
| | |-TPathEntry::GetPos
| | |-DVector::Norm
| | |-TPathEntry::SetSpeed
| | |-TMemory::Ptr2Index
| | |-TMaster::TerrainOn
| | |-FloatVector::Putz
| | |-TTerrain::Elevation
| | |-DVector::GetHorizLength
| | |-ORNJckpoints

FIGURE 2.2-2. Movement Code Tree. (Contd.)

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-15 SWEG Version 6.5

| | | |-TMemory::Deallocate
| | | |-ORNJvertical
| | | | |-TMaster::GetTerrain
| | | | |-TTerrain::IntermediatePoints
| | | | | |-DVector::DVector
| | | | | |-DVector::Getx
| | | | | |-DVector::Gety
| | | | | |-dist
| | | | | |-VertexIndex::VertexIndex
| | | | | |-TTerrain::FindTriangle
| | | | | |-VerticeArray::operator[]
| | | | | |-operator+
| | | | | |-VertexIndex::operator+=
| | | | | |-TMemory::Index2Ptr
| | | | | |-isZeroEquiv
| | | | | |-TMemory::Allocate
| | | | | |-FloatVector::Putx
| | | | | |-FloatVector::Puty
| | | | | |-FloatVector::Putz
| | | | | |-TMemory::Ptr2Index
| | | | | \-FloatVector::Getz
| | | | |-TMemory::Deallocate
| | | | |-TMemory::Ptr2Index
| | | | \-TMemory::LLSTsearch
| | | |-dist
| | | \-dbg_sqrt
| | |-TMemory::LLSTsearch
| | |-DVector::Getz
| | |-DVector::Getx
| | |-DVector::Gety
| | |-dbg_sqrt
| | |-TMaster::GetUanVocab
| | |-TVocab::get_first_word
| | |-TMessages::WriteMessage
| | |-KNMXcontrol
| | | |-TMemory::Index2Ptr
| | | |-TMemory::LLSTsearch
| | | |-TMemory::Ptr2Index
| | | |-operator-
| | | |-TPathEntry::GetPos
| | | |-DVector::GetLength
| | | |-TPathEntry::TPathEntry
| | | |-TPathEntry::SetNext
| | | |-TPathEntry::SetPrev
| | | |-TPathEntry::SetPos
| | | |-TPathEntry::SetSpeed
| | | |-TPathEntry::PutUnitVel
| | | |-DVector::Norm

FIGURE 2.2-2. Movement Code Tree. (Contd.)

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-16 Update: 02/17/98

| | | |-TPathEntry::SetFlags
| | | |-TPathEntry::GetFlags
| | | |-DVector::DVector
| | | |-TPathEntry::GetUnitVel
| | | |-DVector::CrossProduct
| | | |-isZeroEquiv
| | | |-TPathEntry::GetSpeed
| | | |-operator^
| | | |-KNMXmaneuver
| | | | |-isZeroEquiv
| | | | |-FloatVector::Getz
| | | | |-operator-
| | | | |-DVector::DVector
| | | | \-DVector::GetLength
| | | |-KNMXpoints
| | | | |-TMemory::Index2Ptr
| | | | |-TPathEntry::GetNext
| | | | |-operator-
| | | | |-TPathEntry::GetPos
| | | | |-DVector::GetLength
| | | | |-DVector::Norm
| | | | |-TPathEntry::GetSpeed
| | | | |-TMemory::Ptr2Index
| | | | |-isZeroEquiv
| | | | |-TPathEntry::TPathEntry
| | | | |-TPathEntry::PutUnitVel
| | | | |-TPathEntry::GetUnitVel
| | | | |-TPathEntry::SetPos
| | | | |-operator+
| | | | |-operator*
| | | | |-TPathEntry::SetSpeed
| | | | |-TPathEntry::SetTDepart
| | | | |-TPathEntry::GetTDepart
| | | | |-TPathEntry::SetTArrive
| | | | |-TPathEntry::SetFlags
| | | | |-TPathEntry::GetFlags
| | | | |-TPathEntry::SetNext
| | | | |-TPathEntry::SetPrev
| | | | |-DVector::Getz
| | | | |-DVector::DVector
| | | | |-DVector::Putz
| | | | |-DVector::operator*=
| | | | \-dbg_sqrt
| | | |-TPathEntry::SetTDepart
| | | |-TPathEntry::GetTDepart
| | | |-TPathEntry::SetTArrive
| | | |-DVector::GetHorizLength
| | | |-DVector::operator

FIGURE 2.2-2. Movement Code Tree. (Contd.)

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-17 SWEG Version 6.5

| | | |-DVector::Getx
| | | |-DVector::Getz
| | | |-DVector::Gety
| | | |-operator-
| | | |-DVector::operator+=
| | | |-operator*
| | | |-DVector::operator-=
| | | |-operator/
| | | |-operator+
| | | |-TPathEntry::SetRadius
| | | |-KNMXturnarc
| | | | |-TMemory::Index2Ptr
| | | | |-TPathEntry::GetUnitVel
| | | | |-TPathEntry::GetSpeed
| | | | |-isZeroEquiv
| | | | |-vecarc
| | | | | |-dbg_acos
| | | | | \-DVector::DotProduct
| | | | | |-DVector::Getx
| | | | | |-DVector::Gety
| | | | | \-DVector::Getz
| | | | |-operator*
| | | | |-DVector::Norm
| | | | |-TPathEntry::PutUnitVel
| | | | |-TPathEntry::TPathEntry
| | | | |-TMemory::Ptr2Index
| | | | |-TPathEntry::SetNext
| | | | |-TPathEntry::SetPrev
| | | | |-dbg_sqrt
| | | | |-operator+
| | | | |-operator*
| | | | |-TPathEntry::SetPos
| | | | |-operator-
| | | | |-TPathEntry::GetPos
| | | | |-TPathEntry::SetTDepart
| | | | |-TPathEntry::GetTDepart
| | | | |-TPathEntry::SetTArrive
| | | | \-TPathEntry::SetSpeed
| | | |-TPathEntry::GetNext
| | | |-dbg_sqrt
| | | |-TPathEntry::GetTArrive
| | | |-DVector::Putz
| | | \-TPathEntry::CreateOrientation
| | | |-TMemory::Index2Ptr
| | | |-DVector::DVector
| | | |-TOrientation::NeedInitialFacing
| | | |-operator-
| | | |-TPathEntry::GetNextPtr

FIGURE 2.2-2. Movement Code Tree. (Contd.)

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-18 Update: 02/17/98

| | | |-TPathEntry::GetPos
| | | |-DVector::Norm
| | | |-isZeroEquiv
| | | |-DVector::Getx
| | | |-DVector::Gety
| | | |-dbg_atan2
| | | |-TOrientation::SetFacing
| | | | |-TMemory::Index2Ptr
| | | | |-MovePlane::SetRate
| | | | | |-isEquiv
| | | | | \-isZeroEquiv
| | | | \-MovePlane::SetValue
| | | | \-isZeroEquiv
| | | |-dbg_asin
| | | |-DVector::Getz
| | | |-TPathEntry::CheckOBOrient
| | | | |-TMemory::Index2Ptr
| | | | |-DVector::Getx
| | | | |-DVector::Gety
| | | | |-DVector::Getz
| | | | |-isZeroEquiv
| | | | |-FloatVector::Getx
| | | | |-FloatVector::Gety
| | | | |-FloatVector::Getz
| | | | |-TOrientation::AddPoint
| | | | | |-TOrientation::FindOrCreate
| | | | | | |-TOrientation::FindElement
| | | | | | |-TOrientElement::GetTime
| | | | | | |-TOrientElement::TOrientElement
| | | | | | \-TMemory::Ptr2Index
| | | | | |-TOrientElement::DeleteAllAfter
| | | | | | |-TOrientElement::GetNextPtr
| | | | | | \-TOrientElement::~TOrientElement
| | | | | | |-TOrientElement::GetPrevPtr
| | | | | | | \-TMemory::Index2Ptr
| | | | | | \-TOrientElement::GetNextPtr
| | | | | |-TOrientation::UpdCurrPtr
| | | | | | |-TMemory::Ptr2Index
| | | | | | \-TOrientation::FindElement
| | | | | |-MovePlane::SetRate
| | | | | |-MovePlane::GetValue
| | | | | |-MovePlane::SetValue
| | | | | |-MovePlane::GetDuration
| | | | | \-isZeroEquiv
| | | | \-TOrientation::RateChange
| | | | |-TOrientation::FindOrCreate
| | | | \-MovePlane::SetRate

FIGURE 2.2-2. Movement Code Tree. (Contd.)

ASP-II for SWEG Movement • 1.2

Update: 02/17/98 2.2-19 SWEG Version 6.5

| | | |-DVector::VectorsToAngles
| | | | |-dbg_asin
| | | | |-DVector::Getz
| | | | \-dbg_atan2
| | | |-TOrientation::GetLeftVector
| | | | |-TOrientation::FindElement
| | | | |-MovePlane::CalcValue
| | | | |-TOrientElement::GetTime
| | | | \-DVector::DVector
| | | |-TOrientation::AddManeuver
| | | | \-TOrientation::AddPoint
| | | |-TPathEntry::GetRadius
| | | |-TPathEntry::ManeuverData
| | | |-operator+
| | | |-operator*
| | | |-TPathEntry::GetUnitVel
| | | |-vecarc
| | | |-DVector::CrossProduct
| | | |-TOrientation::CalcYaw
| | | |-TOrientation::AddPoint
| | | \-TOrientation::CalcRollRate
| | | |-TOrientation::FindElement
| | | |-MovePlane::CalcRate
| | | \-TOrientElement::GetTime
| | \-TMemory::Deallocate
| |-TPathEntry::GetTDepart
| |-TTable::SearchInt
| |-TMemory::Deallocate
| \-TMessages::WriteMessage
|-TMemory::Deallocate
\-TMBRmutigon

FIGURE 2.2-2. Movement Code Tree. (Contd.)

2.2.4 Assumptions and Limitations

• Space and time are represented by Newtonian physics.

• Mass is not explicitly represented.

• Movement paths are represented by a series of straight line segments and arcs
of circles.

• Acceleration due to gravity is 9.80852 m/sec/sec.

• There is no explicit capability for multiple PLAYERs to move in formation.

• Platforms in SWEG do not have mass, thus no dynamic movement limitations
are imposed by the model.

2.2.5 Known Problems or Anomalies

None.

Movement • 1.2 ASP-II for SWEG

SWEG Version 6.5 2.2-20 Update: 02/17/98

